Calculus A for Economics

Solutions to Exercise Number 1

1) a)
$$f(0) = \frac{0-2}{0+1} = -2;$$
 $f(\sqrt{2}) = \frac{\sqrt{2}-2}{\sqrt{2}+1};$ $g(4) = \frac{|4-2|}{4+1} = \frac{2}{5}.$
b) $f(t+1) - f(t) = \frac{(t+1)-2}{(t+1)+1} - \frac{t-2}{t+1} = \frac{t-1}{t+2} - \frac{t-2}{t+1} = \frac{3}{(t+1)(t+2)}.$

2) a) We have $5 - 2x \ge 0$. Hence $x \le \frac{5}{2}$.

b) We have |x| - x > 0, or |x| > x. If x > 0, we get x > x which is impossible. If x < 0, then |x| > x always holds since the left hand side is positive and the right hand side is negative. Thus, the domain of definition is x < 0.

c) We have $x^2 - 3x + 2 > 0$. Since the roots of $x^2 - 3x + 2 = 0$ are 1 and 2, the domain of definition is (x - 1)(x - 2) > 0. This will happen if x > 2 or x < 1.

d) From the first term we have $\frac{x-2}{x+2} \ge 0$ and $x \ne -2$. Multiplying by $(x+2)^2$, the first inequality is equivalent to $(x-2)(x+2) \ge 0$ or $x^2 \ge 4$. Hence we get the domain x < -2 or $x \ge 2$. The right terms gives us $\frac{1-x}{1+x} \ge 0$ and $x \ne -1$. Arguing similarly, we get $x^2 \le 1$. Thus we get $-1 < x \le 1$. The intersection of the two domains is empty and hence the function is not defined for any x.

3) First notice that for any two positive numbers x and y we have $x \leq y$ if and only if $x^2 \leq y^2$. Also we have $|x|^2 = x^2$. Thus to prove the desired inequality it is enough to prove that $||a| - |b||^2 \leq |a-b|^2$ or $(|a| - |b|)^2 \leq (a-b)^2$. We have $(|a| - |b|)^2 = |a|^2 - 2|a||b| + |b|^2 = a^2 - 2|a||b| + b^2 \leq a^2 - 2ab + b^2$. The last inequality follows from the fact that $ab \leq |a||b|$ and hence $-|a||b| \leq -ab$. Thus we get $(|a| - |b|)^2 \leq a^2 - 2ab + b^2 = (a - b)^2$. Thats what we had to prove.

4) a) Suppose that f(a) = f(b) where a and b are in the domain of definition of f(x). Thus $\sqrt{1-a} = \sqrt{1-b}$ which clearly implies a = b. Thus f(x) is one to one.

b) We have $g(2) = 2 + \frac{1}{2} = \frac{5}{2}$ and also $g(\frac{1}{2}) = \frac{1}{2} + \frac{1}{\frac{1}{2}} = \frac{5}{2}$. Hence $g(2) = g(\frac{1}{2})$ and the function is not one to one.

5) a) Let $f(x) = x - x^2$. Thus $f(-x) = -x - (-x)^2 = -x - x^2$ and hence f(x) is neither even nor odd.

b) Let
$$f(x) = x - x^3 + x^5$$
. Then $f(-x) = -x - (-x)^3 + (-x)^5 = -(x - x^3 + x^5) = -f(x)$.

Hence f(x) is odd. **c)** We have $f(-x) = \frac{a^{-x} + a^{-(-x)}}{2} = \frac{a^{x} + a^{-x}}{2} = f(x)$. Hence f(x) is even.

6) Let F(x) = f(x) + f(-x). Then F(-x) = f(-x) + f(-(-x)) = F(x). Hence F(x) is even.

7) a) First notice that F(x) is defined only for $-1 \le x \le 1$. Thus $0 \le x^2 \le 1$ and $0 \le 1 - x^2 \le 1$. Since the square root of a number between zero and one is also a number between zero and one, we have $0 \le y \le 1$. To show that we get all numbers between zero and one, let $0 \le c \le 1$. Choose $x = \sqrt{1 - c^2}$. Then, for this value of x, we have $y = \sqrt{1 - x^2} = c$. Thus the domain of F(x) is all numbers $0 \le y \le 1$.

b) The domain of definition of h(x) is x < 1. This is equivalent to -1 < -x, or 0 < 1 - x, or $0 < \sqrt{1 - x}$, and hence $0 < \frac{1}{\sqrt{1 - x}}$. Thus y > 0. To show that we get all positive values in y, let c > 0. Choose $x = 1 - \frac{1}{c^2}$. Then $y = h(1 - \frac{1}{c^2}) = c$. Hence the range is all y > 0.

8) We need to solve the equation |(x + 1) + (x - 2)| = |x + 1| + |x - 2| or |2x - 1| = |x + 1| + |x - 2|. The points where the absolute values are zero are at $x = \frac{1}{2}, -1, 2$. Thus we need to consider 4 cases. First $x \leq -1$. In this domain we have $x + 1 \leq 0$ and hence $|x + 1| = -(x + 1), 2x - 1 \leq 0$ and hence $|2x - 1| = -(2x - 1), x - 2 \leq 0$ and hence |x - 2| = -(x - 2). Thus the equation we obtain is -(2x - 1) = -(x + 1) - (x - 2) or 1 - 2x = 1 - 2x. Hence the original equation holds for all $x \leq -1$. Next consider the domain $-1 \leq x \leq \frac{1}{2}$. In this case $x + 1 \geq 0$ and hence |x + 1| = x + 1. The other two terms are as in the domain $x \leq -1$. Hence we get -(2x - 1) = (x + 1) - (x - 2). This implies that x = -1, which we already had in the previous case. In the domain $\frac{1}{2} \leq x \leq 2$ we get the equation (2x - 1) = (x + 1) - (x - 2) which gives us x = 2. The final case, when $x \geq 2$ we get the equation for all $x \geq 2$. Therefore the final solution is $x \leq -1$ or $x \geq 2$.

9) See separate page.

10) We have $f(x+1) - f(x) = (a(x+1)^2 + b(x+1) + 5) - (ax^2 + bx + 5) = 2ax + a + b$. Thus we have 2ax + a + b = 8x + 3. Two polynomials are equal for all x if and only if the corresponding coefficients of each power are equal. Hence we get 2a = 8 and a + b = 3. Thus a = 4 and b = -1.

11) Write $f(x) = \frac{f(x)+f(-x)}{2} + \frac{f(x)-f(-x)}{2}$. Then the first term on the right hand side is an even function and the second term is an odd function. In our case, $f(x) = x^2 + 3x + 2$. Hence, $\frac{f(x)+f(-x)}{2} = \frac{1}{2}((x^2 + 3x + 2) + ((-x)^2 + 3(-x) + 2)) = x^2 + 2$. Similarly, $\frac{f(x)-f(-x)}{2} = \frac{1}{2}((x^2 + 3x + 2) - ((-x)^2 + 3(-x) + 2)) = 3x$. Clearly $f(x) = (x^2 + 2) + 3x$.

12) See separate page.