Calculus A for Economics

Solutions to Exercise Number 1

1) a) $f(0)=\frac{0-2}{0+1}=-2 ; \quad f(\sqrt{2})=\frac{\sqrt{2}-2}{\sqrt{2}+1} ; \quad g(4)=\frac{|4-2|}{4+1}=\frac{2}{5}$.
b) $f(t+1)-f(t)=\frac{(t+1)-2}{(t+1)+1}-\frac{t-2}{t+1}=\frac{t-1}{t+2}-\frac{t-2}{t+1}=\frac{3}{(t+1)(t+2)}$.
2) a) We have $5-2 x \geq 0$. Hence $x \leq \frac{5}{2}$.
b) We have $|x|-x>0$, or $|x|>x$. If $x>0$, we get $x>x$ which is impossible. If $x<0$, then $|x|>x$ always holds since the left hand side is positive and the right hand side is negative. Thus, the domain of definition is $x<0$.
c) We have $x^{2}-3 x+2>0$. Since the roots of $x^{2}-3 x+2=0$ are 1 and 2 , the domain of definition is $(x-1)(x-2)>0$. This will happen if $x>2$ or $x<1$.
d) From the first term we have $\frac{x-2}{x+2} \geq 0$ and $x \neq-2$. Multiplying by $(x+2)^{2}$, the first inequality is equivalent to $(x-2)(x+2) \geq 0$ or $x^{2} \geq 4$. Hence we get the domain $x<-2$ or $x \geq 2$. The right terms gives us $\frac{1-x}{1+x} \geq 0$ and $x \neq-1$. Arguing similarly, we get $x^{2} \leq 1$. Thus we get $-1<x \leq 1$. The intersection of the two domains is empty and hence the function is not defined for any x.
3) First notice that for any two positive numbers x and y we have $x \leq y$ if and only if $x^{2} \leq y^{2}$. Also we have $|x|^{2}=x^{2}$. Thus to prove the desired inequality it is enough to prove that $||a|-|b||^{2} \leq|a-b|^{2}$ or $(|a|-|b|)^{2} \leq(a-b)^{2}$. We have $(|a|-|b|)^{2}=|a|^{2}-2|a||b|+|b|^{2}=$ $a^{2}-2|a||b|+b^{2} \leq a^{2}-2 a b+b^{2}$. The last inequality follows from the fact that $a b \leq|a||b|$ and hence $-|a||b| \leq-a b$. Thus we get $(|a|-|b|)^{2} \leq a^{2}-2 a b+b^{2}=(a-b)^{2}$. Thats what we had to prove.
4) a) Suppose that $f(a)=f(b)$ where a and b are in the domain of definition of $f(x)$. Thus $\sqrt{1-a}=\sqrt{1-b}$ which clearly implies $a=b$. Thus $f(x)$ is one to one.
b) We have $g(2)=2+\frac{1}{2}=\frac{5}{2}$ and also $g\left(\frac{1}{2}\right)=\frac{1}{2}+\frac{1}{\frac{1}{2}}=\frac{5}{2}$. Hence $g(2)=g\left(\frac{1}{2}\right)$ and the function is not one to one.
5) a) Let $f(x)=x-x^{2}$. Thus $f(-x)=-x-(-x)^{2}=-x-x^{2}$ and hence $f(x)$ is neither even nor odd.
b) Let $f(x)=x-x^{3}+x^{5}$. Then $f(-x)=-x-(-x)^{3}+(-x)^{5}=-\left(x-x^{3}+x^{5}\right)=-f(x)$.

Hence $f(x)$ is odd.
c) We have $f(-x)=\frac{a^{-x}+a^{-(-x)}}{2}=\frac{a^{x}+a^{-x}}{2}=f(x)$. Hence $f(x)$ is even.
6) Let $F(x)=f(x)+f(-x)$. Then $F(-x)=f(-x)+f(-(-x))=F(x)$. Hence $F(x)$ is even.
7) a) First notice that $F(x)$ is defined only for $-1 \leq x \leq 1$. Thus $0 \leq x^{2} \leq 1$ and $0 \leq 1-x^{2} \leq 1$. Since the square root of a number between zero and one is also a number between zero and one, we have $0 \leq y \leq 1$. To show that we get all numbers between zero and one, let $0 \leq c \leq 1$. Choose $x=\sqrt{1-c^{2}}$. Then, for this value of x, we have $y=\sqrt{1-x^{2}}=c$. Thus the domain of $F(x)$ is all numbers $0 \leq y \leq 1$.
b) The domain of definition of $h(x)$ is $x<1$. This is equivalent to $-1<-x$, or $0<1-x$, or $0<\sqrt{1-x}$, and hence $0<\frac{1}{\sqrt{1-x}}$. Thus $y>0$. To show that we get all positive values in y, let $c>0$. Choose $x=1-\frac{1}{c^{2}}$. Then $y=h\left(1-\frac{1}{c^{2}}\right)=c$. Hence the range is all $y>0$.
8) We need to solve the equation $|(x+1)+(x-2)|=|x+1|+|x-2|$ or $|2 x-1|=$ $|x+1|+|x-2|$. The points where the absolute values are zero are at $x=\frac{1}{2},-1,2$. Thus we need to consider 4 cases. First $x \leq-1$. In this domain we have $x+1 \leq 0$ and hence $|x+1|=-(x+1), 2 x-1 \leq 0$ and hence $|2 x-1|=-(2 x-1), x-2 \leq 0$ and hence $|x-2|=-(x-2)$. Thus the equation we obtain is $-(2 x-1)=-(x+1)-(x-2)$ or $1-2 x=1-2 x$. Hence the original equation holds for all $x \leq-1$. Next consider the domain $-1 \leq x \leq \frac{1}{2}$. In this case $x+1 \geq 0$ and hence $|x+1|=x+1$. The other two terms are as in the domain $x \leq-1$. Hence we get $-(2 x-1)=(x+1)-(x-2)$. This implies that $x=-1$, which we already had in the previous case. In the domain $\frac{1}{2} \leq x \leq 2$ we get the equation $(2 x-1)=(x+1)-(x-2)$ which gives us $x=2$. The final case, when $x \geq 2$ we get the equation $(2 x-1)=(x+1)+(x-2)$ which gives us $2 x+1=2 x+1$. Hence we get a solution for all $x \geq 2$. Therefore the final solution is $x \leq-1$ or $x \geq 2$.
9) See separate page.
10) We have $f(x+1)-f(x)=\left(a(x+1)^{2}+b(x+1)+5\right)-\left(a x^{2}+b x+5\right)=2 a x+a+b$. Thus we have $2 a x+a+b=8 x+3$. Two polynomials are equal for all x if and only if the corresponding coefficients of each power are equal. Hence we get $2 a=8$ and $a+b=3$. Thus $a=4$ and $b=-1$.
11) Write $f(x)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}$. Then the first term on the right hand side is an even function and the second term is an odd function. In our case, $f(x)=x^{2}+3 x+2$. Hence, $\frac{f(x)+f(-x)}{2}=\frac{1}{2}\left(\left(x^{2}+3 x+2\right)+\left((-x)^{2}+3(-x)+2\right)\right)=x^{2}+2$. Similarly, $\frac{f(x)-f(-x)}{2}=$ $\frac{1}{2}\left(\left(x^{2}+3 x+2\right)-\left((-x)^{2}+3(-x)+2\right)\right)=3 x$. Clearly $f(x)=\left(x^{2}+2\right)+3 x$.
12) See separate page.

